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The Problem

[1 Photocatalytic properties of particulate fillers (TiO,) affect
the service life and durability of polymeric systems.

[0 Photoreactivity widely varies in TiO, materials, depending
on their method of preparation.

[0 Prediction of photoreactivity of these materials is difficult,
since the properties controlling photoreactivity are not well
understood.

0 Each industry/company utilizing TiO, has developed their
own qualitative methods to evaluate photoreactivity.
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Semi-Conductor Nanostructures
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Motivation and Background

NC: erotoreacoiviy

LOW » HIGH
paper self-cleaning surfaces
plastics water purification
coatings chem/bio protection
sunscreen air cleaning
($9 billion/yr) solar cells
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Technical Approach

[1 Develop novel metrologies for the measurement of
photoreactivity

1 Development of analytical techniques for
characterizing bulk and surface properties of TiO,

] Establish correlation(s) between photoreactivity,
material properties and heterogeneous
photochemistry, and product-based tests.
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Impacts
|

[J Fine tune the manufacture of pigment, i.e.
crystal phase, size, and surface treatment, for a
specific application.

[0 Reduce the time-to-market for coatings by using
the ability to optimize the choice of pigment for a
particular coating.

[ Optimize the quantity of pigment used in
coatings, possibly resulting in a cost savings.
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Measurement Organization

Charge Carrier Carrier Trapping/ Oxidation/Reduction
Generation Interfacial Charge Transfer Reactions

H,0,

Photoconductivity EPR EPR
Electron Paramagnetic Resonance THz Spec. Performance Tests
(EPR) Chemical Assays
THz spectroscopy f\
Chemical Assays SLP
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The Link for Pigmented Systems

[0 Take into account

B Protection

LTiO, absorbs UV radiation, preventing direct
photochemical attack

B Degradation

LTiO, absorbs UV radiation and generates free
radicals, which oxidize the binder

B Physical Effects
LIAbility to anchor to the binder
[1Degree of dispersion
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Photoreactivity Program Organization

Characterization Photoreactivity
Surface Measurements
Size and distribution Photoconductivity
Crystal form EPR*

Morphology IPA test*

Chemical assays*
THz spectroscopy
Conductance AFM

Measurement of:

Aggregation
Flocculation
Dispersion
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Product-Based
Testing on Systems

Coatings/polymers

Air cleaners
Antimicrobial surfaces
Photovoltaic cells
Other applications???




Material Characterization

1 Physical Properties

W Crystal Phase XRD
1 Crystalline vs. Amorphous

[J Anatase vs. Rutile

B Particle Size Gas Adsorption
Brunauer, Emmett, and Teller (BET) Method
Microscopy
B Surface Area BET

[0 Chemical Properties
B Elemental Impurities (e.g. Fe, Cr,Nb) XRF
W Surface Charge
[1Zeta Potential, Isoelectric Point t

B Surface Functional Groups Infrared, BET f\

e

Pregictio®




Results Generated Gantt chart

Y1 Y2 Y3 Y4
_ 3\
TChemical Assays Ptotocol*
Pigment
TEPR- Spin Trap Protocol* > Component
Only
EPR- Solid State Low Temp Protocol

: = ;
; EPR- Unfilled Polymer Films
>
: | * Understand the role
: | of particle dispersion in cordice Lip

t Suspensions suspension methods @

Refine and improve current measurements
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Chemical Assays

] Methyl V|O|Ogen/EDTA Validate Hole/Electron Concentration

B Photogenerated holes oxidize EDTA
B Electrons reduce methyl viologen to blue methyl viologen radical

B Rate of adsorption (A=602 nm) directly proportional to rate of
photochemical reaction

] Hyd rogen Peroxide Measurement petermine Reaction Mechanism

B During isopropanol oxidation:

O (CH,),CHOH + =OH — (CH,),=COH + H,0
0 O, g + H,0 — OH ., + HO,e
O (CH,),=COH + 0, - (CH,),CO + H,0,

B o-dianisidine and horseradish peroxidase
[0 Adsorption at A=500 nm
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Chemical Assays

methyl viologen

absorbance @ 602 nm

2.5
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particle designation

« [methyl viologen cation radical]
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A - anatase
B - rutile
C - anatase/rutile

oY VACE Lip
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absorbance (a.u.)

Chemical Assays

Peroxide-Leuco Crystal Violet/Horseradish Peroxidase

1.6~
1.4 Magnified
1.2
1] ‘E?
0.8 év
. sm A B € b E F 5 W 1. G - anatase/rutile
e Particle Designation 2 H - N-anatase
0.4 .
3. |A- anatase
0.2
o,
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Electron Paramagnetic Resonance (EPR)

hv (microwave)
Sample

static magnetic field

UV

[0 Detection of free radical intermediates, oxidation
state/coordination of metal oxide, free radical formation kinetics
evlce;_#@
measurement Z
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EPR

[l Indirectly measure species with unpaired electrons

B Use of “spin traps”, such as nitroxide, to monitor concentration of
specific short-lived free radicals

1 Low temperature (77K or lower)
B Directly identify species with unpaired electrons

[J Identify species involved in charge transfer processes
B Determine the corresponding electron-accepting and
electron-donating sites
BTi*3 and O
B |dentify oxidation states




Peak Area

EPR: Nitroxide Spin-Trap

Comparison of CP/TiO, and AP/TiO,

CPITIO;

AP/TIO;
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EPR: Solid State Studies

[0 EPR was used to monitor changes of the TiO,
pigments in the solid state at 77K.

[1 Each pigment revealed a different EPR spectrum.

[l Each pigment also had a different response with UV
exposure.

[l In general, the intensity of select peaks present in
the initial pigment specimen increased with
Increasing UV exposure. =
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Product-Based Testing Coatings
|

[0 Monitor pigment changes under UV irradiation

B create surface oxygen vacancies at bridging sites, conversion of
relevant Ti*# sites to Ti*2 sites

B Focus on oxygen and titanium
[1 Monitor polymer degradation under UV irradiation
B Follow the disappearance and formation of chemical species

O ATR-FTIR

0 X-ray Photoelectron Spectroscopy (XPS)
B Measures x-ray generated electrons from the surface of samples
B Provides elemental and chemical oxidation state information

O EPR

B Monitor free radical generation in degradation of polymer in combination
with pigment
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Chemistry
XPS Results-High Resolution

Similar degradation rate regardless of pigment type
Epoxy Film with P25
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Chemical Degradation — IR

2952 cm-1 aliphatic carbon-
1
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Chemistry
IR Results

|
Oxidation Product (C=0O at 1762 cm-1)

Degradation rate very similar

3 ; ¢ o regardless of pigment type
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EPR: Polymer Film Studies

[0 EPR was used to examine filled and unfilled epoxy
and acrylic urethane films in-situ with UV exposure.

[0 New peaks appear in the EPR spectrum with
Increasing UV exposure.

B Some peaks are due to the polymer resin
B Some peaks are due to the pigment

[0 UV exposed filled acrylic urethane films show
greater EPR peak intensity.
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Summary

[0 NIST Focus: Provide tools to understand fundamental
aspects of photoreactivity in TiO, and insight into
conventional performance testing.

[J Chemical assays guantitatively measure the electron/hole
concentrations in various systems and can be used to
validate other photoreactivity measurements.

[0 EPR spectroscopy can identify both the nature and lifetimes
of short-lived species in pigments and polymer systems.

[J Product-based tests still have an important role In product

development. f\
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